Jump to content

Toxin: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Bibcode Bot (talk | contribs)
m Adding 0 arxiv eprint(s), 1 bibcode(s) and 0 doi(s). Did it miss something? Report bugs, errors, and suggestions at User talk:Bibcode Bot
Rescuing 3 sources and tagging 0 as dead. #IABot (v1.6.2) (Balon Greyjoy)
Line 11: Line 11:
According to an [[International Committee of the Red Cross]] review of the [[Biological Weapons Convention]], "Toxins are poisonous products of organisms; unlike biological agents, they are inanimate and not capable of reproducing themselves", and "Since the signing of the Constitition, there have been no disputes among the parties regarding the definition of biological agents or toxins".<ref name="urlThe Biological Weapons Convention - An overview">{{cite web |url=http://www.icrc.org/web/eng/siteeng0.nsf/html/57JNPA |title=The Biological Weapons Convention - An overview |work= |accessdate=13 December 2008}}</ref>
According to an [[International Committee of the Red Cross]] review of the [[Biological Weapons Convention]], "Toxins are poisonous products of organisms; unlike biological agents, they are inanimate and not capable of reproducing themselves", and "Since the signing of the Constitition, there have been no disputes among the parties regarding the definition of biological agents or toxins".<ref name="urlThe Biological Weapons Convention - An overview">{{cite web |url=http://www.icrc.org/web/eng/siteeng0.nsf/html/57JNPA |title=The Biological Weapons Convention - An overview |work= |accessdate=13 December 2008}}</ref>


According to [[Title 18 of the United States Code]], "... the term "toxin" means the [[Toxicity|toxic]] material or product of [[plant]]s, [[animal]]s, [[microorganism]]s (including, but not limited to, [[bacteria]], [[virus]]es, [[fungi]], [[rickettsiae]] or [[protozoa]]), or infectious substances, or a [[Recombinant DNA|recombinant]] or synthesized molecule, whatever their origin and method of production..."<ref name="urlU.S. Code">{{cite web |url=http://law2.house.gov/uscode-cgi/fastweb.exe?getdoc+uscview+t17t20+235+1++()%20%20AND%20((18)%20ADJ%20USC)%3ACITE%20AND%20(USC%20w/10%20(209))%3ACITE |title=U.S. Code |work= |accessdate=13 December 2008}}</ref>
According to [[Title 18 of the United States Code]], "... the term "toxin" means the [[Toxicity|toxic]] material or product of [[plant]]s, [[animal]]s, [[microorganism]]s (including, but not limited to, [[bacteria]], [[virus]]es, [[fungi]], [[rickettsiae]] or [[protozoa]]), or infectious substances, or a [[Recombinant DNA|recombinant]] or synthesized molecule, whatever their origin and method of production..."<ref name="urlU.S. Code">{{cite web |url=http://law2.house.gov/uscode-cgi/fastweb.exe?getdoc+uscview+t17t20+235+1++()%20%20AND%20((18)%20ADJ%20USC)%3ACITE%20AND%20(USC%20w/10%20(209))%3ACITE |title=U.S. Code |work= |accessdate=13 December 2008 |deadurl=yes |archiveurl=https://web.archive.org/web/20110721042611/http://law2.house.gov/uscode-cgi/fastweb.exe?getdoc+uscview+t17t20+235+1++%28%29%20%20AND%20%28%2818%29%20ADJ%20USC%29%3ACITE%20AND%20%28USC%20w%2F10%20%28209%29%29%3ACITE |archivedate=21 July 2011 |df=dmy-all }}</ref>


A rather informal terminology of individual toxins relates them to the anatomical location where their effects are most notable:
A rather informal terminology of individual toxins relates them to the anatomical location where their effects are most notable:
Line 251: Line 251:
==External links==
==External links==
* [http://www.t3db.org/ T3DB: Toxin-target database]
* [http://www.t3db.org/ T3DB: Toxin-target database]
* [http://protchem.hunnu.edu.cn/toxin ATDB: Animal toxin database]
* [https://web.archive.org/web/20080820090609/http://protchem.hunnu.edu.cn/toxin ATDB: Animal toxin database]
* [http://www.toxicology.org Society of Toxicology]
* [http://www.toxicology.org Society of Toxicology]
* [http://www.jvat.org.br The Journal of Venomous Animals and Toxins including Tropical Diseases]
* [http://www.jvat.org.br The Journal of Venomous Animals and Toxins including Tropical Diseases]
* [http://toxseek.nlm.nih.gov/ ToxSeek: Meta-search engine in toxicology and environmental health]
* [https://web.archive.org/web/20110211134419/http://toxseek.nlm.nih.gov/ ToxSeek: Meta-search engine in toxicology and environmental health]
* [http://www.ecotoxmodels.org/ Website on Models & Ecotoxicology]
* [http://www.ecotoxmodels.org/ Website on Models & Ecotoxicology]



Revision as of 21:57, 21 January 2018

A toxin (from Ancient Greek: τοξικόν, romanizedtoxikon) is a poisonous substance produced within living cells or organisms;[1][2] synthetic toxicants created by artificial processes are thus excluded. The term was first used by organic chemist Ludwig Brieger (1849–1919).[3]

Toxins can be small molecules, peptides, or proteins that are capable of causing disease on contact with or absorption by body tissues interacting with biological macromolecules such as enzymes or cellular receptors. Toxins vary greatly in their toxicity, ranging from usually minor (such as a bee sting) to almost immediately deadly (such as botulinum toxin).

Terminology

Toxins are often distinguished from other chemical agents by their method of production—the word toxin does not specify method of delivery (compare with venom and the broader meaning of poison—all substances that can also cause disturbances to organisms). It simply means it is a biologically produced poison. There was an ongoing terminological dispute between NATO and the Warsaw Pact over whether to call a toxin a biological or chemical agent, in which the NATO opted for biological agent, and the Warsaw Pact, like most other countries in the world, for chemical agent.[citation needed]

According to an International Committee of the Red Cross review of the Biological Weapons Convention, "Toxins are poisonous products of organisms; unlike biological agents, they are inanimate and not capable of reproducing themselves", and "Since the signing of the Constitition, there have been no disputes among the parties regarding the definition of biological agents or toxins".[4]

According to Title 18 of the United States Code, "... the term "toxin" means the toxic material or product of plants, animals, microorganisms (including, but not limited to, bacteria, viruses, fungi, rickettsiae or protozoa), or infectious substances, or a recombinant or synthesized molecule, whatever their origin and method of production..."[5]

A rather informal terminology of individual toxins relates them to the anatomical location where their effects are most notable:

On a broader scale, toxins may be classified as either exotoxins, being excreted by an organism, or endotoxins, that are released mainly when bacteria are lysed.

Biotoxins

The term "biotoxin" is sometimes used to explicitly confirm the biological origin.[6][7] Biotoxins are further classified into fungal biotoxins, or short mycotoxins, microbial biotoxins, plant biotoxins, short phytotoxins and animal biotoxins.

Toxins produced by microorganisms are important virulence determinants responsible for microbial pathogenicity and/or evasion of the host immune response.[8]

Biotoxins vary greatly in purpose and mechanism, and can be highly complex (the venom of the cone snail contains dozens of small proteins, each targeting a specific nerve channel or receptor), or relatively small protein.

Biotoxins in nature have two primary functions:

Some of the more well known types of biotoxins include:

Environmental toxins

The term "environmental toxin" can sometimes explicitly include synthetic contaminants[9] such as industrial pollutants and other artificially made toxic substances. As this contradicts most formal definitions of the term "toxin", it is important to confirm what the researcher means when encountering the term outside of microbiological contexts.

Environmental toxins from food chains that may be dangerous to human health include:

Finding information about toxins

The Toxicology and Environmental Health Information Program (TEHIP)[20] at the United States National Library of Medicine (NLM) maintains a comprehensive toxicology and environmental health web site that includes access to toxins-related resources produced by TEHIP and by other government agencies and organizations. This web site includes links to databases, bibliographies, tutorials, and other scientific and consumer-oriented resources. TEHIP also is responsible for the Toxicology Data Network (TOXNET),[21] an integrated system of toxicology and environmental health databases that are available free of charge on the web.

TOXMAP is a Geographic Information System (GIS) that is part of TOXNET. TOXMAP uses maps of the United States to help users visually explore data from the United States Environmental Protection Agency's (EPA) Toxics Release Inventory and Superfund Basic Research Programs.

Computational resources for prediction of toxic peptides and proteins

One of the bottlenecks in peptide/protein-based therapy is their toxicity. Recently, in silico models for predicting toxicity of peptides and proteins, developed by Gajendra Pal Singh Raghava's group,[22] predict toxicity with reasonably good accuracy. The prediction models are based on machine learning technique and quantitative matrix using various properties of peptides. The prediction tool is freely accessible to public in the form of web server.[23]

Misuse of the term

When used non-technically, the term "toxin" is often applied to any toxic substance, even though the term toxicant would be more appropriate. Toxic substances not directly of biological origin are also termed poisons and many non-technical and lifestyle journalists follow this usage to refer to toxic substances in general.[clarification needed]

In the context of quackery and alternative medicine, the term "toxin" is used to refer to any substance alleged to cause ill health. This could range from trace amounts of potentially dangerous pesticides, to supposedly harmful substances produced in the body by intestinal fermentation (auto-intoxication), to food ingredients such as table sugar, monosodium glutamate (MSG), and aspartame.[24]

See also

References

  1. ^ "toxin" at Dorland's Medical Dictionary
  2. ^ "toxin - Definition from the Merriam-Webster Online Dictionary". Retrieved 13 December 2008.
  3. ^ https://books.google.com/books?id=oWhqhK1cE-gC&pg=PA6
  4. ^ "The Biological Weapons Convention - An overview". Retrieved 13 December 2008.
  5. ^ "U.S. Code". Archived from the original on 21 July 2011. Retrieved 13 December 2008. {{cite web}}: Unknown parameter |deadurl= ignored (|url-status= suggested) (help)
  6. ^ "biotoxin - Definition from the Merriam-Webster Online Dictionary". Retrieved 13 December 2008.
  7. ^ "biotoxin" at Dorland's Medical Dictionary
  8. ^ Proft T (editor) (2009). Microbial Toxins: Current Research and Future Trends. Caister Academic Press. ISBN 978-1-904455-44-8. {{cite book}}: |author= has generic name (help)
  9. ^ Grigg J (March 2004). "Environmental toxins; their impact on children's health". Arch. Dis. Child. 89 (3): 244–50. doi:10.1136/adc.2002.022202. PMC 1719840. PMID 14977703.
  10. ^ Vale, Carmen; Alfonso, Amparo; Vieytes, Mercedes R.; Romarís, Xosé Manuel; Arévalo, Fabiola; Botana, Ana M.; Botana, Luis M. (2008). "In Vitro and in Vivo Evaluation of Paralytic Shellfish Poisoning Toxin Potency and the Influence of the pH of Extraction". Analytical Chemistry. 80 (5). American Chemical Society: 1770–1776. doi:10.1021/ac7022266. PMID 18232710.
  11. ^ Oikawa, Hiroshi; Fujita, Tsuneo; Saito, Ken; Satomi, Masataka; Yano, Yutaka (2008). "Difference in the level of paralytic shellfish poisoning toxin accumulation between the crabs Telmessus acutidens and Charybdis japonica collected in Onahama, Fukushima Prefecture". Fisheries Science. 73 (2). Springer: 395–403. doi:10.1111/j.1444-2906.2007.01347.x.
  12. ^ Abouabdellah, Rachid; Taleb, Hamid; Bennouna, Asmae; Erler, Katrin; Chafik, Abdeghani; Moukrim, Abdelatif (2008). "Paralytic shellfish poisoning toxin profile of mussels Perna perna from southern Atlantic coasts of Morocco". Toxin. 51 (5). Elsevier: 780–786. doi:10.1016/j.toxicon.2007.12.004. PMID 18237757.
  13. ^ Wang, Lin; Liang, Xu-Fang; Zhang, Wen-Bing; Mai, Kang-Sen; Huang, Yan; Shen, Dan (2009). "Amnesic shellfish poisoning toxin stimulates the transcription of CYP1A possibly through AHR and ARNT in the liver of red sea bream Pagrus major". Marine Pollution Bulletin. 58 (11). Elsevier: 1643–1648. doi:10.1016/j.marpolbul.2009.07.004. PMID 19665739.
  14. ^ Wang, Lin; Vaquero, E.; Leão, J. M.; Gogo-Martínez, A.; Rodríguez Vázquez, J. A. (2001). "Optimization of conditions for the liquid chromatographic-electrospray lonization-mass spectrometric analysis of amnesic shellfish poisoning toxins". Chromatographia. 53 (1). Vieweg Verlag: S231–S235. doi:10.1007/BF02490333.
  15. ^ Mouratidou, Theoni; Kaniou-Grigoriadou, I.; Samara, C.; Kouimtzis, T. (2006). "Detection of the marine toxin okadaic acid in mussels during a diarrhetic shellfish poisoning (DSP) episode in Thermaikos Gulf, Greece, using biological, chemical and immunological methods". Science of the Total Environment. 366 (2–3). Elsevier: 894–904. doi:10.1016/j.scitotenv.2005.03.002. PMID 16815531. Closed access icon
  16. ^ Doucet, Erin; Ross, Neil N.; Quilliam, Michael A. (2007). "Enzymatic hydrolysis of esterified diarrhetic shellfish poisoning toxins and pectenotoxins". Analytical and Bioanalytical Chemistry. 389 (1). Springer: 335–342. doi:10.1007/s00216-007-1489-3. PMID 17661021.
  17. ^ Poli, Mark A.; Musser, Steven M.; Dickey, Robert W.; Eilers, Paul P.; Hall, Sherwood (2000). "Neurotoxic shellfish poisoning and brevetoxin metabolites: a case study from Florida". Toxicon. 38 (7). Elsevier: 981–993. doi:10.1016/S0041-0101(99)00191-9. PMID 10728835. Closed access icon
  18. ^ Morohashi, Akio; Satake, M.; Murata, K.; Naoki, H.; Kaspar, H.; Yasumoto, T. (1995). "Brevetoxin B3, a new brevetoxin analog isolated from the greenshell mussel perna canaliculus involved in neurotoxic shellfish poisoning in new zealand". Tetrahedron Letters. 36 (49). Elsevier: 8995–8998. doi:10.1016/0040-4039(95)01969-O.
  19. ^ Morohashi, Akio; Satake, Masayuki; Naoki, Hideo; Kaspar, Heinrich F.; Oshima, Yasukatsu; Yasumoto, Takeshi (1999). "Brevetoxin B4 isolated from greenshell mussels Perna canaliculus, the major toxin involved in neurotoxic shellfish poisoning in New Zealand". Natural Toxins. 7 (2): 45–48. doi:10.1002/(SICI)1522-7189(199903/04)7:2<45::AID-NT34>3.0.CO;2-H. PMID 10495465. Retrieved 15 February 2010.
  20. ^ SIS.nlm.nih.gov
  21. ^ Toxnet.nlm.nih.gov
  22. ^ Sudheer Gupta, Pallavi Kapoor, Kumardeep Chaudhary, Ankur Gautam, Rahul Kumar, Open Source Drug Discovery Consortium, Gajendra P. S. Raghava (2013). "In Silico Approach for Predicting Toxicity of Peptides and Proteins". PLOS ONE. 8: e73957. Bibcode:2013PLoSO...873957G. doi:10.1371/journal.pone.0073957. PMC 3772798. PMID 24058508.{{cite journal}}: CS1 maint: multiple names: authors list (link) CS1 maint: unflagged free DOI (link)
  23. ^ ToxinPred
  24. ^ ""Detoxification" Schemes and Scams". Quackwatch.

External links