User:IlIIllIIIIlllIlIIllllIllllII/sandbox

From Wikipedia, the free encyclopedia

Theorem — Let be a compact manifold with boundary with metric tensor . Let denote the manifold interior of and let denote the manifold boundary of . Let denote inner products of functions and denote inner products of vectors. Suppose and is a vector field on . Then

where is the outward-pointing unit normal vector to .

Proof of Theorem. [1] We use the Einstein summation convention. By using a partition of unity, we may assume that and have compact support in a coordinate patch . First consider the case where the patch is disjoint from . Then is identified with an open subset of and integration by parts produces no boundary terms:

In the last equality we used the Voss-Weyl coordinate formula for the divergence, although the preceding identity could be used to define as the formal adjoint of . Now suppose intersects . Then is identified with an open set in . We zero extend and to and perform integration by parts to obtain
where . By a variant of the straightening theorem for vector fields, we may choose so that is the inward unit normal at . In this case is the volume element on and the above formula reads
This completes the proof.

  1. ^ Taylor, Michael E. (2011). "Partial Differential Equations I". Applied Mathematical Sciences. New York, NY: Springer New York. pp. 178–179. doi:10.1007/978-1-4419-7055-8. ISBN 978-1-4419-7054-1. ISSN 0066-5452.