User:Yaqi Zhao/sandbox/Channelopathy/skeleton muscle

From Wikipedia, the free encyclopedia
Channelopathy
Sodium channel, implicated in channelopathies including Brugada syndrome, Long QT syndrome, Dravet syndrome, Paramyotonia congenita
SpecialtyMedical genetics, Neuromuscular medicine, Cardiology
SymptomsDependent on type. Include: Syncope, muscle weakness, seizures, breathlessness
ComplicationsDependent on type. Include: Sudden death
CausesGenetic variants

Channelopathies are diseases caused by disturbed function of ion channel subunits or the proteins that regulate them.[1][2] These diseases may be either congenital (often resulting from a mutation or mutations in the encoding genes) or acquired[3] (often resulting from autoimmune attack on an ion channel).

There are many distinct dysfunctions known to be caused by ion channel mutations. The genes for the construction of ion channels are highly conserved amongst mammals and one condition, hyperkalemic periodic paralysis, was first identified in the descendants of Impressive, a registered Quarter Horse.

The channelopathies of human skeletal muscle include hyper- and hypokalemic (high and low potassium blood concentrations) periodic paralysis, myotonia congenita and paramyotonia congenita.

Channelopathies affecting synaptic function are a type of synaptopathy.

Types[edit]

The types in the following table are commonly accepted.[by whom?][citation needed] Channelopathies currently under research, like Kir4.1 potassium channel in multiple sclerosis, are not included.


Condition Channel type
Alternating hemiplegia of childhood Na⁺/K⁺-ATPase
Bartter syndrome various by type
Brugada syndrome various, by type
Catecholaminergic polymorphic ventricular tachycardia (CPVT) Ryanodine receptor
Congenital hyperinsulinism Inward-rectifier potassium ion channel
Cystic fibrosis Chloride channel
Dravet Syndrome Voltage-gated sodium channel
Episodic Ataxia Voltage-gated potassium channel
Erythromelalgia Voltage-gated sodium channel
Generalized epilepsy with febrile seizures plus Voltage-gated sodium channel
Familial hemiplegic migraine various
Associated with one particular disabling form of Fibromyalgia[4] Voltage-gated sodium channel
Hyperkalemic periodic paralysis Voltage-gated sodium channel
Hypokalemic periodic paralysis Voltage-gated sodium channel

or
voltage-dependent calcium channel (calciumopathy)

Lambert-Eaton myasthenic syndrome Voltage-gated calcium channel
Long QT syndrome

main type Romano-Ward syndrome

various, by type
Malignant hyperthermia Ligand-gated calcium channel
Mucolipidosis type IV Non-selective cation channel
Myotonia congenita Voltage-dependent chloride channel
Neuromyelitis optica Aquaporin-4 water channel
Neuromyotonia Voltage-gated potassium channel
Nonsyndromic deafness various
Paramyotonia congenita
(a periodic paralysis)
Voltage-gated sodium channel
Polymicrogyria (Brain Malformation) Voltage-gated sodium channel, SCN3A[5] ATP1A3[6]
Retinitis pigmentosa
(some forms)
Ligand-gated non-specific ion channels
Short QT syndrome various potassium channels suspected
Timothy syndrome Voltage-dependent calcium channel
Tinnitus Voltage-gated potassium channel of the KCNQ family
Seizure Voltage-dependent potassium channel[7][8]

References[edit]

  1. ^ Kim JB (January 2014). "Channelopathies". Korean Journal of Pediatrics. 57 (1): 1–18. doi:10.3345/kjp.2014.57.1.1. PMC 3935107. PMID 24578711.
  2. ^ Kass RS (August 2005). "The channelopathies: novel insights into molecular and genetic mechanisms of human disease". The Journal of Clinical Investigation. 115 (8): 1986–9. doi:10.1172/JCI26011. PMC 1180558. PMID 16075038.
  3. ^ Sid Gilman (2007). Neurobiology of Disease. Academic Press. pp. 319–. ISBN 978-0-12-088592-3. Retrieved 22 November 2010.
  4. ^ Vargas-Alarcon G, Alvarez-Leon E, Fragoso JM, Vargas A, Martinez A, Vallejo M, Martinez-Lavin M (February 2012). "A SCN9A gene-encoded dorsal root ganglia sodium channel polymorphism associated with severe fibromyalgia". BMC Musculoskeletal Disorders. 13: 23. doi:10.1186/1471-2474-13-23. PMC 3310736. PMID 22348792.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  5. ^ Smith RS, Kenny CJ, Ganesh V, Jang A, Borges-Monroy R, Partlow JN, Hill RS, Shin T, Chen AY, Doan RN, Anttonen AK, Ignatius J, Medne L, Bönnemann CG, Hecht JL, Salonen O, Barkovich AJ, Poduri A, Wilke M, de Wit MC, Mancini GM, Sztriha L, Im K, Amrom D, Andermann E, Paetau R, Lehesjoki AE, Walsh CA, Lehtinen MK (September 2018). "V1.3) Regulation of Human Cerebral Cortical Folding and Oral Motor Development". Neuron. 99 (5): 905–913.e7. doi:10.1016/j.neuron.2018.07.052. PMC 6226006. PMID 30146301.
  6. ^ Smith RS, Florio M, Akula SK, Neil JE, Wang Y, Hill RS, et al. (2021-06-22). "Early role for a Na + ,K + -ATPase ( ATP1A3 ) in brain development". Proceedings of the National Academy of Sciences. 118 (25): e2023333118. doi:10.1073/pnas.2023333118. PMC 8237684. PMID 34161264.
  7. ^ Hunter JV, Moss AJ (January 2009). "Seizures and arrhythmias: Differing phenotypes of a common channelopathy?". Neurology. 72 (3): 208–9. doi:10.1212/01.wnl.0000339490.98283.c5. PMID 19153369. S2CID 207103822.
  8. ^ Mulley JC, Scheffer IE, Petrou S, Berkovic SF (April 2003). "Channelopathies as a genetic cause of epilepsy". Current Opinion in Neurology. 16 (2): 171–6. doi:10.1097/00019052-200304000-00009. PMID 12644745. S2CID 40441842.

Bibliography[edit]

External links[edit]

VIDEO Channel Surfing in Pediatrics by Carl E. Stafstrom, M.D., at the UW-Madison Health Sciences Learning Center.

*




Above original article, edits below



Channelopathy[edit]

Introduction[edit]

Channelopathies are a group of diseases caused by the dysfunction of ion channel subunits or their interacting proteins. These diseases can be inherited or acquired by other disorders, drugs, or toxins. Mutations in genes encoding ion channels, which impair channel function, are the most common cause of channelopathies[1]. There are more than 400 genes that encode ion channels, found in all human cell types and are involved in almost all physiological processes[2]. Each type of channel is a multimeric complex of subunits encoded by a number of genes. Depending where the mutation occurs it may affect the gating, conductance, ion selectivity, or signal transduction of the channel.

Channelopathies can be categorized based on the organ system which they are associated with. In the cardiovascular system, the electrical impulse needed for each heartbeat is made possible by the electrochemical gradient of each heart cell. Because the heartbeat is dependent on the proper movement of ions across the surface membrane, cardiac channelopathies make up a key group of heart diseases[3]. Long QT syndrome, the most common form of cardiac channelopathy, is characterized by prolonged ventricular repolarization, predisposing to a high risk of ventricular tachyarrhythmias (e.g., torsade de pointes), syncope, and sudden cardiac death[4].

Skeleton muscle channelopathy[edit]

The channelopathies of human skeletal muscle are a series of rare gene disorder diseases include periodic paralyses and non-dystrophic myotonias based on clinical symptoms. The dysfunction of sarcolemmal ion channels result in the loss of skeletal muscle excitability to contract (muscle weakness), or to relax (myotonia). However, the diagnosis and therapy are challenged by the obscure symptoms and diverse phenotypic manifestations[5].

Periodic paralyses[edit]

Periodic paralyses are autosomal-dominant disorders of muscle excitability, which can be classified into hyperkalemic periodic paralyses, hypokalemic periodic paralyses, and Andersen-Tawil syndrome (ATS). They are caused by mutations of sodium (Nav1.4), calcium (Cav1.1), and several inward-rectifier potassium channels (Kir2.1, Kir2.6, and Kir3.4).

  • Hyperkalemic periodic paralysis is induced by abnormal high serum K+ ions due to mutations of Nav1.4. Nav1.4 channel is inactivated, companied with sodium influx and cell depolarization[6], which results in K+ efflux from muscle through K+ channel, and elevate K+ ion concentration in serum.
  • Hypokalemic periodic paralysis (low serum K+ ions) is the most common periodic paralysis and has the prevalence of 0.00013%[7]. The mutation in SCN4A and CACNA1S cause an aberrant permeation pathway for H+ or Na+ and form cation leak currents. The fiber depolarization inactivates Nav1.4 and Cav1.1 channels and induce paralysis[8].
  • Andersen-Tawil syndrome is a rare multiorgan disease characterized by hyperkalemic/hypokalemic periodic paralysis, skeletal malformations, and cardiac arrhythmias (long QT syndrome). KCNJ2 mutations can suppress potassium inward rectifier Kir2.1 currents and enhance inward currents[9].

Non-dystrophic myotonias[edit]

Non-dystrophic myotonias include myotonia congenita (MC), paramyotonia congenita (PMC) and sodium channel myotonias (SCM).

  • Myotonia congenita is a autosomal dominant or autosomal recessive disorder caused by mutations in chloride (ClC-1 coding by CLCN1)[10]. The alterations of ClC-1 reduce chloride conductance and hamper muscle relaxation after contraction. Myotonia congenita can be improved by exercise, seen as "warm-up phenomenon".
  • Missense mutation in SCN4A gene can cause paramyotonia congenita and sodium channel myotonias. Paramyotonia congenita is an autosomal dominant disorder disease. In contrast to MC, PMC worsens with sustained exercise. It is characterized by early onset muscle stiffness that worsens with cold and exercise, and often accompanied with muscle weakness.
  • Sodium channel myotonias are autosomal dominant and characterized by pure myotonia without weakness.


  1. ^ Kim, June-Bum (2014). "Channelopathies". Korean Journal of Pediatrics. 57 (1): 1. doi:10.3345/kjp.2014.57.1.1. ISSN 1738-1061. PMC 3935107. PMID 24578711.{{cite journal}}: CS1 maint: PMC format (link)
  2. ^ Imbrici, Paola; Liantonio, Antonella; Camerino, Giulia M.; De Bellis, Michela; Camerino, Claudia; Mele, Antonietta; Giustino, Arcangela; Pierno, Sabata; De Luca, Annamaria; Tricarico, Domenico; Desaphy, Jean-Francois (2016-05-10). "Therapeutic Approaches to Genetic Ion Channelopathies and Perspectives in Drug Discovery". Frontiers in Pharmacology. 7. doi:10.3389/fphar.2016.00121. ISSN 1663-9812. PMC 4861771. PMID 27242528.{{cite journal}}: CS1 maint: PMC format (link) CS1 maint: unflagged free DOI (link)
  3. ^ Marbán, Eduardo (2002-01). "Cardiac channelopathies". Nature. 415 (6868): 213–218. doi:10.1038/415213a. ISSN 0028-0836. {{cite journal}}: Check date values in: |date= (help)
  4. ^ Kim, June-Bum (2014). "Channelopathies". Korean Journal of Pediatrics. 57 (1): 1. doi:10.3345/kjp.2014.57.1.1. ISSN 1738-1061. PMC 3935107. PMID 24578711.{{cite journal}}: CS1 maint: PMC format (link)
  5. ^ Phillips, Lauren; Trivedi, Jaya R. (2018-10-01). "Skeletal Muscle Channelopathies". Neurotherapeutics. 15 (4): 954–965. doi:10.1007/s13311-018-00678-0. ISSN 1878-7479. PMC 6277285. PMID 30341599.{{cite journal}}: CS1 maint: PMC format (link)
  6. ^ Terjung, Ronald, ed. (2011-01-17). Comprehensive Physiology (1 ed.). Wiley. doi:10.1002/cphy.c140062. ISBN 978-0-470-65071-4. PMC 4754081. PMID 25880512.{{cite book}}: CS1 maint: PMC format (link)
  7. ^ Horga, Alejandro; Rayan, Dipa L. Raja; Matthews, Emma; Sud, Richa; Fialho, Doreen; Durran, Siobhan C. M.; Burge, James A.; Portaro, Simona; Davis, Mary B.; Haworth, Andrea; Hanna, Michael G. (2013-04-16). "Prevalence study of genetically defined skeletal muscle channelopathies in England". Neurology. 80 (16): 1472–1475. doi:10.1212/WNL.0b013e31828cf8d0. ISSN 0028-3878. PMC 3662361. PMID 23516313.{{cite journal}}: CS1 maint: PMC format (link)
  8. ^ Tricarico, Domenico; Camerino, Diana Conte (2011). "Recent Advances in the Pathogenesis and Drug Action in Periodic Paralyses and Related Channelopathies". Frontiers in Pharmacology. 2. doi:10.3389/fphar.2011.00008. ISSN 1663-9812. PMC 3108473. PMID 21687503.{{cite journal}}: CS1 maint: PMC format (link) CS1 maint: unflagged free DOI (link)
  9. ^ Davies, N. P.; Imbrici, P.; Fialho, D.; Herd, C.; Bilsland, L. G.; Weber, A.; Mueller, R.; Hilton-Jones, D.; Ealing, J.; Boothman, B. R.; Giunti, P. (2005-10-11). "Andersen-Tawil syndrome: New potassium channel mutations and possible phenotypic variation". Neurology. 65 (7): 1083–1089. doi:10.1212/01.wnl.0000178888.03767.74. ISSN 0028-3878.
  10. ^ Imbrici, P.; Maggi, L.; Mangiatordi, G. F.; Dinardo, M. M.; Altamura, C.; Brugnoni, R.; Alberga, D.; Pinter, G. Lauria; Ricci, G.; Siciliano, G.; Micheli, R. (2015-09-15). "ClC-1 mutations in myotonia congenita patients: insights into molecular gating mechanisms and genotype-phenotype correlation: Clinico-functional analysis of MC mutations in hClC-1 channel". The Journal of Physiology. 593 (18): 4181–4199. doi:10.1113/JP270358. PMC 4594292. PMID 26096614.{{cite journal}}: CS1 maint: PMC format (link)